GlobalView – Amateur Radio Callsign Prefix Program.

Created by : G.W. Sutton G4EVW

Project Notes – August 2002

This program was written using IBasic – a simple yet powerful Windows programming system developed by Pyxia Development.

(Visit www.pyxia.com for more information, to obtain a free trial copy, or a registered copy for only $25)

Beginning

The project began with a set of 10 satellite images of the Earth, each from a different 45 degree angle, plus the North and South Poles. They looked great – you can see all the features including what appear to be giant craters where some meteor impact might well have occurred.

I thought it would be nice to view them in sequence – then how about simulating rotation. Very pretty, but what if your own location could be shown – and that of other radio stations? – and how far away are they. This would be useful to radio amateurs to see how far their weak signals can reach.

Radio callsigns indicate which Country is involved - so store all International callsigns. Whoa! – this is getting to be some project.

I have to acknowledge the use of many Web resources in developing this project. www.fourmilab.ch for the images. The detailed list of Prefixes compiled by AC6V and the many amateurs who contributed to this. The helpful comments of the users of the Pyxia website bulletin board.

All my efforts are offered freely for all to use.

[image: image1.png]West

0
Image Sequence

East

The Basic Structure

The .jpg images were arranged to display in sequence at 45 degree intervals. So image 0 was the ‘0n0w’ view. (ie. 0 degrees North, 0 degrees West). This would be followed by the next image to the West, ‘0n45w’, and so on round the World.

So the sequence is:

0n0w

Image 0

0n45w

Image 1

0n90w

Image 2

0n135w

Image 3

0n180e

Image 4

0n135e

Image 5

0n90e

Image 6

0n45e

Image 7

plus the Pole images :

90n0w

Image 8

90s0w

Image 9

The sequence is held in array rot[]. When an arrow symbol is clicked, the next image is selected.

The images are displayed with a 500 pixel diameter, in the centre of the screen. So the screen layout is:

[image: image2.png]600p

800p

0p

250p

e 1500

250p

e 4000 — s 2500

The centre of the circle is at co-ordinates (260,400).

Positions in Space

The first time the program runs, the user is asked to enter his Home grid co-ordinates. The Latitude and Longitude values can be obtained from a map. These values are only entered once, and are saved in a small file ‘global.ini’.

When the program loads the main display page, it is necessary to display the best image for the Home location. To do this, images are assigned a range of angles, 22.5 degrees either side of their centre angle. An image selection array ‘him[]‘ is loaded as follows:

View angle * 10
Westerly Image
Easterly Image

225
0
0

675
1
7

1125
2
6

1575
3
5

1800
4
4

Given the Home Longitude, the best fit is found in the first column (which is degrees*10), and the image selected based on whether the Longitude is to the West or to the East of Greenwich.

This gets the right image on the screen, but we then need to display a marker for the Home Location.

So the next problem is how to locate the marker given the Latitude and Longitude values. We are dealing with a 2D image of a 3D object - the globe.

Each image has an angle of view relative to 0 degrees, and these are held in array ImAngle[]

The Image view angles are:

Image

Angle relative to Greenwich

0

 0(
1

-45(
West

2

-90(
West

3

-135(
West

4

+180(
East

5

+135(
East

6

+90(
East

7

+45(
East

If the (Home Longitude – the Image angle) > 90 degrees, the location is not visible on that image.

Subroutine HomeInd() handles this decision, and calls two other subroutine Long() and Lat() to calculate the x,y pixel co-ordinates corresponding to the Longitude and Latitude.

The Latitude equation is:

iy = ceil(260 - 250 * sin(HLat * d2r))

The Longitude conversion equation is:

ix = ceil(400 + 250 * sin(HLong * d2r) * LatMul)

d2r is the degrees to radians conversion factor d2r = pi / 180, and pi = 4 * atan(1). Phew!

Latmul is another factor need to correct for the Latitude of the Home location. The ‘ix’ value which positions the horizontal display point based on the 250pixel radius, is only correct at the equator. The displacement from the 400 pixel centre line gets less as you move towards the Poles.

Hence LatMul = cos(HLat * d2r) is needed to get the right ‘ix’ displacement.

The Home Location now displays as a flashing green circle at the (ix,iy) co-ordinates unless the location is not visible on a particular image. This works fine for all horizontal images, but the Pole views are something else again.

A separate subroutine PoleInd() was needed to get the location to display correctly in Pole views.

The calculations required a lot of working out – have a look at the subroutine if you are interested.

The flashing is controlled by a 1 second timer. Observing the mouse location when clicked controls the rotation of the globe. If it corresponds to the location of one of the control arrow bitmaps, the required operation is performed.

So Where’s Everybody else

OK, so now we have a rotating globe, with our Home location shining nicely. What about other radio stations. We need to locate them, and get another little light to flash.

Here is where the going got heavy. I hadn’t realised just how many Countries there were, and how many different formats of amateur Prefixes.

I decided to set up an editable list of prefixes in a simple text file – that way it could be added to if required. I found a lot of data relating to prefixes on the net and started the list. To do what I had in mind, I also needed the grid co-ordinates associated with each Country prefix. For each Country I checked locations using Microsoft Encarta, which gives accurate Latitude and Longitude figures.

The list grew to nearly 900 locations – took quite a while.

The reason there are so many is that larger Countries are split into smaller administrative regions, and each of these needs a defining location.

All this data is stored in the text file ‘prefix.txt’. Keep a backup copy if you are going to edit it – just in case.

Prefixes

The reason for prefixes and an idea of their structure is covered in the user guide. I want to mention another problem which arose, where I managed to save a lot of data space.

In the case of the USA for example, several ranges of prefixes are possible … AA – AL, KA – KZ, NA – NZ, WA – WZ, A, K, N and W. The country also uses 10 regional codes 0 – 9 as part of prefixes. This would have required a lot of repetitive data. So the program has been written to internally convert A, K, and N codes to W, and only the W codes are expanded into regional detail. The same trick is used for the Russian R and U codes, so only R codes are expanded.

Prefixes are sorted into descending order using a Quicksort routine in subroutine qsd().

Locating prefixes was found to be difficult. Eventually, subroutine find() was developed to do this. It definitely required the ‘Select 1’ … ‘Endselect’ process to achieve the logic to do this job.

This language feature is I think unique to IBasic. The ‘case’ tests can incorporate quite tricky logic, which need to be ‘true’ to satisfy the Select 1 control. Very useful.

Once you have found a prefix, from the sorted prefix list, the variable ‘ind’ points to the main Country data file c[] from which the location Latitude and Longitude is obtained. Now all we have to do is bring up a flashing red indicator on the map at the correct position and its done. This is done with subroutine StationInd() which is very similar to HomeInd().

So Near – So Far

Ok, we now have two flashing indicators. We know where we are, and where the other chap is.

But how far away is he round the globe? Distance is very bent round the surface of the Earth. Straight- line distance is not the answer. So what to do?

Fortunately, given two grid co-ordinates on a sphere, there is a calculation to find the distance between the two points. The ‘Great Circle’ distance.

The calculation is messy and is described in subroutine db(), so I won’t repeat it here. It involves a ‘magic constant’ – 69.05, to convert the result to miles. I don’t like using values whose origin I don’t understand – but this one turns out to be the Radius of the Earth * pi /180. The calculation is explained in detail in the book ‘Reference Data for Radio Engineers’, published by Howard W. Sams & Co. fifth edition March 1969.

We also would like to know what time it is at the remote station – no point trying to transmit to a station in the middle of the night.

Time can be calculated by first referring your local time – as displayed on your computer, to GMT. Then adding or subtracting an offset which subtracts in a Westerly direction and adds in an Easterly direction. The correction is 4 minutes per degree of Longitude. Very strange to see the time getting earlier as you move West, and later as you move East, but finishing up as the same time at 180 degrees round the far side of the globe.

Exactly where are We

One other feature seemed worth setting up. Showing the Latitude and Longitude values as you move the cursor over the globe. I was surprised how easy this was to do. We already have a subroutine click() which converts mouse click co-ordinates (ix,iy) to Latitude and Longitude for the map being viewed, and returns with ‘cLat’ and ‘cLong’ set for the specified point clicked ... I just haven’t mentioned it yet.

All that is needed is to keep calling this routine as the mouse moves over the map, and to display the results. I thought this approach might run like treacle – but no, it works fine.

Click on the Map and I’ll tell you where you are.

We have set up the program so far to locate a Callsign entered in the box at the bottom right of the screen. But the converse of this is when you don’t know the callsign for a given Country.

What would be nice is to click on the map and have the information appear.

In this case, we know the (ix, iy) co-ordinates where the mouse is clicked, and need to convert this into Latitude and Longitude values in order to locate the Country details. To help with this, the program sets up a sorted array ls[] of Latitude values.

Subroutine click() mentioned above, does the conversion to grid co-ordinates and we can again display the location on the map. In this instance, the display only persists for 10 seconds and then disappears.

You can re-activate it of course.

Summary

That’s about it I think. You may find some of the code useful in your own projects.

The final result I find satisfying, and it will be useful to me as a radio amateur when I make contact with other stations around the World.

If you haven’t tried IBasic programming – maybe you use VB or Delphi – give it a try. It can reach parts that other languages cannot.

Best wishes,

Graham (G4EVW)

g.w.sutton@btopenworld.com

